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The investigations [I, 2], on the basis of the notion and calculations by the author 
regarding the need to allow for reverse transitions in Eyring's theory [I] and the consider- 
ation of vacancy density in the contact of two media [2], presented a method of finding the 
relative bond strength E = o/o0 (o0 is the maximum possible bond strength, while o is the 
value actually achieved during the time to of effective interaction in the contact during 
decomposition) between two media in the case where the substrate and particles are made of 
the same material. The study [3] proposed a method of calculating the absolute value of bond 
strength ~in the special case of identical materials for the substrate and particles of a pow- 
der. In connection with the importance of creating a strong bond between the coating and 
the base in plasma deposition, it is of both scientific and practical interest to construct 
a theory of bonding of two media with different characteristics. 

At the initial moment of forr~ation of the contact, the absence of bonds between the sur- 
face atoms (complexes) of the two media (particles of powder and substrate) can be approxi- 
mated by the existence of a plane of vacancies at the interface. The formation of bonds re- 
sults from the migration of vacancies from the vacancy plane and the appearance of atoms of 
the particles or substrate in their place. 

We will examine a vacancy plane at the moment of time t = 0 as one of the microstates 
of a system ~ of quasiequilibrium vacancies corresponding to the temperature T k of the con- 
tact (we will ignore the effect of three-dimensional vacancies present at the initial mo- 
ment). We will assume that the state with the vacancy plane represents a significant fluc- 
tuation (greater than the mean), i.e., that the system is significantly nonequilibrium. The 
nonequilibrium vacancies (the vacancy plane) will tend to undergo a redistribution to reach 
an equilibrium state. After the effective time to (when T k can be approximately considered 
constant and relatively high), the system changes from the significantly nonequilibrium state 
to another state which is less nonequilibrium. We will distinguish certain small volumes V• 
corresponding to an equilibrium concentration of vacancies at Tk and containing a single con- 
tact plane (henceforth, + and -- will characterize quantities pertaining to the particles and 
substrate). Considering that these volumes are in thermal contact with a thermostat, we can 
apply a Gibbs distribution [4] to the system of N• vacancies included in V• 

Proceeding on the basis of thermodynamic considerations, we assume that the maximum pos- 
sible bond strength o0 is equal to the difference between the free energy G (I) (t = 0) of the 
system of vacancies in the state with the vacancy plane and the free energy G (2) of all of 
the vacancy complexes included in V+ and V- in the state of complete equilibrium (t ~ T, T 
is the relaxation time to establish complete equilibrium): 

We calculate the equilibrium concentration N~v• of n vacancies, i.e., the ratio of the 

equilibrium number Nn• of complexes consisting of n monovacancies to the number of components 

(atomic volumes) NV• in a volume V• For this, we write the free energy of a volume V• with 

n vacancies of one type: 

GC~ AC t AG~ =,+A~•247 5 n~• ,+• +'"I' (2)  

where 5 f Gnv • is the change in free energy connected with the formation of one n-th vacancy; 

6Gnv• is the change in free energy with the formation of an n-th complex of n monovacancies, 

with the superscript 0 pertaining to the defect-free state; Nn• is the quasiequilibrium number 
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of n vacancy complexes. It should be noted that AGnv • depends not only on n, but also on the 

configuration. The formation of vacancies requires a supply of energy, but in this case there 
is an increase in the configuration entropy Snvconf. Thus, at high temperatures the free 
energy (such as the thermodynamic potential G in relation to the variables p and T, where p 
is pressure) may be lower. The free energy minimum corresponds to the equilibrium concentra- 
tion of vacancies. Minimizing AG(2 ),,+ = G(2) --G(+ ~ with respect to Nn+ with NV+ = const, T k = 

_ n ! - _ _ 

AG~v • = const and with allowance for Nn+ - << NV• In k! ~ klnk- k at k >> I, we obtain const, 

the following for the equilibrium concentration of n complexes of defects 

+~ nv_ = Nnl /Nv++ - �9 AS{,++,conf:.+/./~ ) exp (-- AG{,+,~+/RT+r 

N,+! = N;++iNv+ - = N.• exp (-- AS~.rconf+/R ) exp (-- AG~t~• ). (4) 

e 
The number Nn_+(4) of n complexes and their equilibrium concentration Nnv+(3) are ex- 

pressed through an as-yet undetermined quantity N V. We should note that the number of va- 
cancies v in the vacancy plane included in V+ and V_ is approximately equal to half the sum 
of the surface densities of the atoms (molecules) [(]N+I + IN-I)/2] and corresponds to the 
equilibrium state for the contact temperature T k. It can be shovm [5] that the distribution 
of the particle vacancies obeys the following law as a function of the distance to the va- 
cancy plane 

c •  t , - -  - - - ~ ,  exp (5) 

where D i s  the  d i f f u s i o n  c o e f f i c i e n t  o f  t he  v a c a n c i e s ,  Now we i n t r o d u c e  the  number V+ of  
monovaeanc ies  ( i n c l u d i n g  in the  complexes)  in  V+. F i n d i n g  the  r a t i o  of  the  f lows  of v a -  
c a n c i e s  ( i n c l u d i n g  in  the  complexes)  in V_+. F i n d i n g  the  r a t i o  of  the  f lows  of v a c a n c i e s  in  
V+ and V_ f rom ( 5 )  and c o n s i d e r i n g  t h a t  v = v+ + v_, f rom the  r e l a t i o n  v + / ~ -  ~ DC~+/~D/~_ we 
ob t a in 

-- ~ live +.  (6) 

N o r m a l i z i n g  on the  c o n d i t i o n  ~ Nn+n = ~+ , we o b t a i n  

NY• = v_+Q_~' exp ( -  AStoconfJR ) exp (-- aO{~,i.//~rk); (7) 

N v  + - "~ v~O~'; (8) 
V_ b 

0 i  = ~ m. e.xp ( -- ASt,conf_+/R ) exp (-- Adm,:J/~/'k). (9) 
m = l  

We find the free energy of the body after the distribution of the vacancies ow~r the 
volume (i.e., at t > T). Considering that v• << NV• , Nn• << NV_+, we will consider an equi- 

brium system of vacancies to be a mixture of ideal gases (monovacancy, and in general n-va- 
cancy). Using the expression in [4] for the free energy of dilute solutions and considering 
the fluctuating part Gosc• of the free energy (which becomes important at high temperatures) 

of a system of two and n-vacancy complexes, we obtain 

nC~) .,~ ~(o) ~_ ~ a(2) . ( I O) 
- -  ~+ ~ Nn&RT ~ In e ~n•162 

• _ , + nCOnf • 

The e x p r e s s i o n  f o r  Gnosc • depends  on the  number of v a c a n c i e s  in the  complex and in a c -  

co rdance  wi th  [4] i s  d e t e r m i n e d  by the  e x p r e s s i o n s  

Gnoa.i = Nn+__ltrkln [1 -- exp (-- ~ c % •  n = 2, 

: E 1. p -  ( -   +j%/Rrk) ] ,,/> 3, (1 1) 

G(2) =~ ~ G ~"-) osc ~ n osC• 
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where the nonlinear complexes Bn• = 3n -- 6 and for linear complexes Bn• = 3n -- 5. In Eqs. 

(10) and (11) ~n• = eni(P, Tk, NV• is a small change experienced by free energy with the 

introduction of a single n-th vacancy into V• ~n and ~Bn is the frequency of the normal os- 
(2) 

cillations of the complex. Differentiating G• (10) with respect to NV• and Nn• , we find 

the chemical potential of n-vacancy gases and the potential referred only to the volume V• 
without the v• vacancies we examined, in relation to Nn• 

n ~ l  (12)  
= Rr k + nrk]  + =.• 

(for the sake of simplicity, the oscillatory part is not written). 
in the form 

~_+ 

n : l  n = l  OSCJI . 

G (~ ----- BT k In N-r ~ N n = e o n s t .  

The free energy is written 

(13) 

Finding the expression for the chemical potentials ~• pv at t = 0 

It i F(~ ) RTk 
= - - N v  •  t%=,~v, 

we then write the free energy G (1) 

(14) 

G(1) = G~ )-Jr- G(~ =v ~ G(~ G(lo~c G~ )r~ "= - -  ( fVv+ - -  ~ •  R~. /NV: t :  = const, (15)  
3V--5 

c<1,o~,. =/+rk. ~ ln/t--exp(-- ~+,Jnrk)]" 

I n s e r t i n g  (13) and (15) in to  (1) ,  we ob ta in  the fo l l owing  for  the maximum bond energy 

O~ = {a~)"-}-G(-~ a(~ ~. ~ -- RTk ln=l ~ Nn+ In ~ + Rrk) 

n ~ l  \ - -  n = l  

where the expression in the first bracket is a constant (for example, with Tk, p = const), 

G~0),' G!0)' NV~. ' ~(2) ~(i) . . . .  Nn• ~ ~osc• ~osc• are determined by Eqs. (15), (13), (7), (8), (11), 

(15), while ~n• can be taken equal to the energy of formation of the n-th vacancy, i.e., 

~n• = AG~/N A= (N A is Avogadro's number). 

Equation (16), found for the maximum bond strength, is of general physical interest in 
problems of bond energy. Let us use this result to find the bond strength o (through the bond 
strength o0) attained in the deposition of a powdered coating on a substrate. 

Multiplying the relative bond strength ~ (see [I, 2], for example) (in view of its com- 
plexity, the diffusive-kinetic mechanism of bonding of a powdered coating with a substrate 
for different substrate and particle materials will be examined in a later article) by o0, 
we find the actual strength 

a = ~ao. ( 1 7 )  

Let us point out yet one other method of calculating the actual bond strength o without 
allowing for the relative strength e. We will examine the fluctuation of the free energy of 
the vacancy system we examined, ignoring fluctuations in the number of particles Nn• 

Aa(t) = c ( t ) -  c(~)= a ( t ) -  ~2), 
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a ( t ) =  a + ( o  + a (t),: G(~)= G ~ ) +  G t~J ' - �9 - : :  ( 1 8 )  

Obviously, <AG> = 0, <(AG)2> ~ 0. Let the quantity AG(t) at the moment of time t have a 
value greater than the mean fluctuation, i.e., AG(t) > <(AG)2> I/2 . Then there is a correla- 

tion between the values of AG(t) at different moments of time t < T, i.e., the value of AG(t) 

at the moment t affects the value of AG(t') at another moment of time t'. As a characteristic 
of the time correlation we introduce the mean value of the product <AG(t)AG(t')>. It should 
be noted that the state of the volume V+ + V_ at the moment t = 0 with the vacancy plane can 
be considered a state of incomplete equilibrium, in which AG(0) >> <(AG(t))2> I/2. 

Due to the long relaxation time, the process of formation of a bond after the effective 
time to (t o ~ T) while we are examining will be considered quasistationary, as will the energy 
fluctuation. In this case, the time to has the meaning of the relaxation time to establish 
incomplete equilibrium. The rate of change in AG(t) in relation to t depends on the value 
of AG(t) [4]: 

, d A G ( t ) / d t  --LAG(t) (19)  

in the case of large fluctuations, but it permits limiting ourselves to the linear term in 
the expansion of dAG(t)/dt in powers of AG(t). In (19), I is the inverse of the relaxation 
time. Integration of (19) yields 

<hG(t)AG(t')> = <(hG(t)i=> exp (--~it -- t'Di (20)  

Having used (20), we write the bond energy at the moment of time t in the form 

a : G(O) - - G ( T )  - -  AG( t )  " G(1) --G(2) --  <(AG(t ) )2>l /~ .  ( 2 ] )  

S i n c e  t h e  r e l a x a t i o n  i s  a s t o c h a s t i c  p r o c e s s ,  t h e n  t h e  t i m e  t o  o f  b o n d  f o r m a t i o n  c a n  b e  b r o k e n  
down i n t o  s i n t e r v a l s .  Then AG( t0 )  i s  r e p r e s e n t e d  in  t h e  f o r m  

<(q (to))2 > = ((G (0))2> exp - - . .T  ~r , (22)  

where I/I r has the meaning of the relaxation time for establishing incomplete equilibrium in 
the interval tr+ I -- t r. At to ~ T we can approximately set I r = I. Then (22) will have the 
form 

<(G (t0))2> ~ ((G (0))~> ~ -t0~ =_j(G(D~e-t~ . (23)  

Considering that the process of transition to the equilibrium state is connected with the 
migration of vacancies, we can evaluate T from the relation [6] 

L ~ b ]/b'~, (24) 

where D is the diffusion coefficient of the vacancies (D is equal to the lesser of D+ and D-); 
L is the characteristic diffusion path; b is a coefficient on the order of I. Considering 
that at t = 0 there are ~ vacancies in the vacancy plane in V+ + V_, from (24) and (7), (8) 
we find 

~ dv'b 2 D ~ exp.[-- AS' on~ + A a ~ ) / ~ T k  , d = t m -~, ( 25 ) 

where the prime above v ,  S, and G means that in place of 9', S', and G' it is necessary to 
take ~+, S+, and G. if D = D+, and conversely. 

Insertion of (I), (16), (25), and (23) into (21) leads to an expression for the bond 
energy in the contact of two different media -- in particular, in the contact of particles 
of a powder coating and a substrate and between the particles of a sintered powder. 

We can be assured of a high level of accuracy in the theory when we limit ourselves to 
mono- and bivacancies while ignoring (11). Expressions which are very simple and convenient 
for applications are obtained. We will use only a monovacancy approximation as an illustra- 
tion (the extension to the case of mono- and bivacancies is not difficult). Considering (2) 
and (6)  and the relations v i =NI+ ~Nv• ' NI+ + N1 - =v~ I/lal 2 (a is the atomic spacing) and 

noting that the number of ruptured bonds in the ~ vacancies is one-third the number in the 
monovacancies and that the entropy factor can be ignored in metals, we obtain the following 

for the maximum possible bond energy o0 
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2 

+ .'Ta11,,_v-l~a-- a I ; I : A ~  g ~ + +  _ +VD-$+VD-I_ AH~-" 

f m 
Here, 5H v and 5H v are, respectively, the enthalpy of formation and the displacements of the 
vacancies, AH~ ~ AH~ ~ E/2 (E is the diffusion activation energy). 

As an example, let us evaluate the maximum possible bond energy on the boundary of Fe(+) 
and Cr(--) (such as in the deposition of Cr on Fe, between Fe and Cr particles in a consOli- 
dated powdered material, between Fe and Cr phases in an alloy, etc.). Considering that D = 
Do exp (--AH~/RT k) and assuming Do+ = 1.8"IU -5 m2/sec, Do- = 1.5-10 -8 m2/sec, E+ = 2.71-105 
kJ/kmole, E_ = 2.21-105 kJ/kmole [6], a ~ a+ ~ a_ ~ 2.5"10 -1~ m [7], AH~/E ~ 0.65 (for a bcc 
lattice) [6], T k ~ 900~ [8], we find o0 ~ 3.13 J/m ~ This agrees satisfactorily with the 
value 4.34 J/m 2 obtained in [9] by a completely different method. Similarly, an estimate 
the bond energy attained during the time of effective interaction in a contact to % 10 -5 sec 
[8] in plasma deposition [from Eq. (21)] gives a value o % 1.5 J/m 2, which also roughly agrees 
with the bond strength found experimentally. 
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